Redox regulation of transient receptor potential channels.
نویسندگان
چکیده
SIGNIFICANCE Environmental and endogenous reactive species such as reactive oxygen species (ROS), reactive nitrogen species (RNS), and other electrophiles are not only known to exert toxic effects on organisms, but are also emerging as molecules that mediate cell signaling responses. However, the mechanisms underlying this cellular redox signaling by reactive species remains largely uncharacterized. RECENT ADVANCES Ca2+-permeable cation channels encoded by the transient receptor potential (trp) gene superfamily are characterized by a wide variety of activation triggers that act from outside and inside the cell. Recent studies have revealed that multiple TRP channels sense reactive species and induce diverse physiological and pathological responses, such as cell death, chemokine production, and pain transduction. TRP channels sense reactive species either indirectly through second messengers or directly via oxidative modification of cysteine residues. In this review, we describe the activation mechanisms and biological roles of redox-sensitive TRP channels, including TRPM2, TRPM7, TRPC5, TRPV1, and TRPA1. CRITICAL ISSUES The sensitivity of TRP channels to reactive species in vitro has been well characterized using molecular and pharmacological approaches. However, the precise activation mechanism(s) and in vivo function(s) of ROS/RNS-sensitive TRP channels remain elusive. FUTURE DIRECTIONS Redox sensitivity of TRP channels has been shown to mediate previously unexplained biological phenomena and is involved in various pathologies. Understanding the physiological significance and activation mechanisms of TRP channel regulation by reactive species may lead to TRP channels becoming viable pharmacological targets, and modulators of these channels may offer therapeutic options for previously untreatable diseases.
منابع مشابه
Redox and trace metal regulation of ion channels in the pain pathway
Given the clinical significance of pain disorders and the relative ineffectiveness of current therapeutics, it is important to identify alternative means of modulating nociception. The most obvious pharmacological targets are the ion channels that facilitate nervous transmission from pain sensors in the periphery to the processing regions within the brain and spinal cord. In order to design eff...
متن کاملRedox regulation of calcium ion channels: chemical and physiological aspects.
Reactive oxygen species (ROS) are increasingly recognized as second messengers in many cellular processes. While high concentrations of oxidants damage proteins, lipids and DNA, ultimately resulting in cell death, selective and reversible oxidation of key residues in proteins is a physiological mechanism that can transiently alter their activity and function. Defects in ROS producing enzymes ca...
متن کاملElectroacupuncture reduces chronic fibromyalgia pain through attenuation of transient receptor potential vanilloid 1 signaling pathway in mouse brains
Objective(s): Fibromyalgia pain is a mysterious clinical pain syndrome, characterized by inflammation in the brain, whose molecular mechanisms are still unknown. Females are more commonly affected by fibromyalgia, exhibiting symptoms such as widespread mechanical pain, immune dysfunction, sleep disturbances, and poor quality of life. Electroacupuncture (EA) has been us...
متن کاملThe mammalian TRPC cation channels.
Transient Receptor Potential-Canonical (TRPC) channels are mammalian homologs of Transient Receptor Potential (TRP), a Ca(2+)-permeable channel involved in the phospholipase C-regulated photoreceptor activation mechanism in Drosophila. The seven mammalian TRPCs constitute a family of channels which have been proposed to function as store-operated as well as second messenger-operated channels in...
متن کاملTransient receptor potential channels meet phosphoinositides
Transient receptor potential (TRP) cation channels are unique cellular sensors that are involved in multiple cellular functions, ranging from transduction of sensory signals to the regulation of Ca(2+) and Mg(2+) homoeostasis. Malfunctioning of TRP channels is now recognized as the cause of several hereditary and acquired human diseases. At the time of cloning of the first Drosophila TRP channe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Antioxidants & redox signaling
دوره 21 6 شماره
صفحات -
تاریخ انتشار 2014